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Abstract
The path integral form of the propagator for a stochastic Schrödinger equation
is used to derive stochastic differential equations on the quantum phase space of
interacting q-bits in a random environment. The equations can be considered
as an approximate ‘classical’ model of the quantum system. Predictions of
the model are compared with that of the exact quantum equations for various
examples of the environment operators.

PACS numbers: 02.50.Ey, 02.60.Lj, 03.67.−a

1. Introduction

The development of quantum information technology (QIT) [1] has revitalized interest in the
notorious problems of the relation between the quantum and the classical descriptions of a
physical system. Robustness and decoherence of quantum superpositions between classically
distinct states of the system, entanglement between subsystems and the qualitative properties
of the quantum versus the classical dynamics are examples of related phenomena which
must be successfully described and understood before the advantages of quantum systems can
be used for an efficient processing of information. The standard theory of closed quantum
systems does not answer these types of questions. In particular, the effect of the unavoidable
coupling between a quantum system and its environment, which is crucial for the control
of the quantum processor, could be quite different depending on the qualitative properties
of the intrinsic dynamics of the system (see, for example, [2–4]). Analysis of this question
is further complicated by the fact that in the case of a genuinely quantum system, like the
system of q-bits, which is not obtained by quantization of a classical one, the classical notions
of regular or chaotic dynamics have no universally accepted definitions [5, 6]. Typically
quantum effects, like dynamical generation of entanglement [7], make the separation of
different effects even more difficult. In this paper, we shall show how a phase-space
representation of the q-bits, provided by the theory of generalized coherent states [8, 9], can
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be useful in analysing the influence of noise in qualitatively different dynamical states of
the system.

The following Hamiltonian, of N interacting q-bits in an external classical field, could
be considered as representing an ideal universal quantum processor [10, 11], which models
different experimental proposals:

H =
∑

j

bj Sj +
∑
i<j

λi,j SiSj , (1)

where SiSj ≡ Si
xS

j
x + Si

yS
j
y + Si

zS
j
z and S

j
x,y,z are the three components of the vector

operator Sj of the j th q-bit, and satisfy the usual SU(2) commutation relations. The parameter
bj could be considered as a local magnetic field and λi,j represents the interaction between
the i and j spins. These parameters are usually functions of time, bringing an explicit
time dependence in Ĥ . For example, the Hamiltonian of the universal quantum processor
realized by an array of quantum dots is of the form (1) [11, 12]. Of course, the Hamiltonians
of the form (1) have been used to model various systems in solid-state physics for a long
time. In particular, and in relation to potential applications in QIP, a variety of interacting
charge q-bits based on Josephson junctions are described by Hamiltonian of the form (1),
with the corresponding interpretation of the parameters bj and λi,j . Various theoretical
(see, for example, [13–15]) and experimental [16] results have been reviewed recently in [17].

The influence of the environment on the system of q-bits (or its subsystem) in a quantum
computer cannot be avoided, and at the same time it is crucial in the relation between the
quantum and the classical. The theory of open quantum systems gives the necessary conceptual
framework and the required mathematical tools [18–20]. Furthermore, in order to make the
quantum and the classical formalisms as close as possible it is convenient to use the phase-
space representation of the quantum system. Such representation exists for a large class of
quantum systems, even for those, like (1), that are not obtained by the quantization of a
classical mechanical model [8, 9, 21]. In this case, the phase-space picture enables one to
use precise notions and tools of the theory of dynamical systems to study typically quantum
objects [22]. In fact, both the phase-space representations and the theory of open quantum
systems have been developed mostly inspired by the common field of quantum optics, and
have influenced each other [20].

The states and the dynamics of an open system are most commonly described by
considering the reduced density matrix ρ̂c and the corresponding master equation, obtained by
taking the trace over the environmental degrees of freedom [20]. A pair of interacting q-bits in
interaction with a bath of quantum oscillators was studied in detail using this approach in [13]
(where further references to the solid-state applications can be found). A recent application
of a master equation for the reduced density matrix of coupled pair of charged q-bits in
Josephson junctions is described in [15]. In the density matrix approach, the primary object
is an ensemble of quantum systems. The phase-space representations using various quantum
distributions and the corresponding master equations have been used intensively in the past.
However, as in the classical case [23], there is also an alternative approach which centres on
the quantum systems in a pure state |ψ(t)〉, whose time evolution is described by a stochastic
Schrödinger equation (SSH) with a c-number noise η(t) [24, 25], [20]. Classical average of
|ψη〉〈ψη| over the stochastic process η(t) relates the two approaches, i.e. the master equation
and the stochastic Schrödinger equation. Our goal is to obtain and use the phase-space
representation of a particular type of the stochastic Schrödinger equation corresponding to the
system of q-bits in a random environment. As we shall see, the phase-space representation
of the stochastic Schrödinger equation gives complex Ito–Langevein stochastic differential
equations for the conjugated variables of the quantum phase space. The phase-space equations
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can be considered as a classical or, better, a phase space model of the quantum system. We
shall analyse relations between the exact quantum system and the phase-space model for some
examples of the environment operators. The phase-space picture of open systems, described
by stochastic Schrödinger equations, have been used before in the cases of linear systems
[26, 27] or nonlinear oscillators [2], for which the semi-classical approximation and the
classical limit make sense. However, we are not aware of any results along these lines,
concerning the important system of q-bits described by (1).

2. q-bit coherent states and the phase space

In this section, we shall briefly describe the quantum phase space of the systems with SU(2)

and SU(2)
⊗

N dynamical groups and collect the relevant formulae. The general references
for the subject, were most that is recollected in this section can be found, are [8, 9].

The dynamical group of a quantum system is a Lie group G such that the state space of the
quantum system is also a space of an irreducible unitary representation of G. For example, a
free one-dimensional quantum particle and the quantum oscillator have the Heisenberg group
as their dynamical group. The dynamical group of a q-bit is SU(2).

The Lie algebra su(2) is given by the commutation relations:

[Sz, S±] = ±S±, [S−, S+] = −2Sz, (2)

where Sz, S± are related to x, y, z components of the spin Sx, Sy, Sz by S± = Sx ± iSy and
Sz = S3. The systems of units used is such that h̄ = 1, since no quasi-classical asymptotic
will be involved. The quotient space M = SU(2)/U(1) is obtained by exponentiation of
the su(2)/u(1), where u(1) is the maximal commutative sub-algebra of su(2) generated by
Sz. M is a symmetric space, with Riemannian and symplectic structure. These structures are
explicitly constructed using the generalized coherent states, which are given by the group and
(in general) by its particular representation.

For the SU(2) group, the space of an irreducible representation is finite-dimensional
space V s with dimV s = 2s + 1, where s is fixed non-negative integer or half-integer. In our
case s = 1/2, but we shall, nevertheless, keep the explicit dependence on s. The formal limit
s → ∞ corresponds to a ‘classical spin’.

Action of an arbitrary group element g ∈ G on the lowest weight vector |s,−s〉 can be
split into a product of two terms:

T̂ s(g)|s,−s〉 = T̂ s(d)T̂ s(h)|s,−s〉
= T̂ s(d)|s,−s〉 exp iψ(h), exp iψ(h) ∈ U(1) (3)

where T̂ s is a representation matrix.
The quotient manifold SU(2)/U(1) is in a one-to-one correspondence with the set of the

coherent states |α〉, defined by the result of the action of a one parameter family of, so-called,
displacement operators D̂(α) on the vector |s,−s〉. Thus,

|α〉 = D̂(α)|s,−s〉 = exp(αŜ+ − ᾱŜ−)|s,−s〉, (4)

where α is a complex number, ᾱ its complex conjugate and Ŝ± denote the representation
matrices in V s of the algebra generators S±.

The manifold SU(2)/U(1) has the structure of a two-dimensional sphere S2, which can be
identified, via the stereographic projection, with C∪{∞}. The sphere S2 is a two-dimensional
manifold equipped with the standard symplectic structure which is introduced as follows: first,
the non-normalized coherent states ‖z〉 are defined by

‖z〉 = exp zŜ+|s,−s〉, (5)
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where z ∈ C ∪ {∞}. The norm of ‖z〉 is used to define the so-called Bargman kernel given by

Ks(z̄, z) = ln〈z‖z〉 = ln(1 + |z|2)2s .

The symplectic structure is then given by

ωs = (−1)1/2 ∂2Ks(z̄, z)

∂z̄∂z
dz ∧ dz̄ = 2(−1)1/2

(1 + zz̄)2
dz ∧ dz̄, z ∈ C ∪ {∞}. (6)

The metric on S2 is given by

gi,j = δi,j

2s

(1 + zz̄)2
. (7)

The relation between the parameters z and α is obtained via yet another parametrization
of the sphere S2 by angles 0 � θ � π and 0 � φ < 2π . One has

z = tan
θ

2
exp −iφ, α = θ

2
exp −iφ. (8)

Local canonical coordinates (q, p) for the symplectic structure ωs are given by

τ =
(

1

4s

)1/2

(q + ip) τ̄ =
(

1

4s

)1/2

(q − ip), (9)

where τ = z(1 + zz̄)−1/2. In these coordinates, the Poisson bracket of two functions on S2 has
the canonical form

{f, g} = ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (10)

The sphere S2, together with the symplectic structure ωs=1/2, is the quantum phase space
of a q-bit.

There are various prescriptions, or representations, for constructing a phase-space picture
of a quantum system. They are based on the completeness relation for the coherent states

1 =
∫

S2
|α〉 dµ(α)〈α|, (11)

where dµ(α) = (2s + 1) sin θ dθ dφ/4π is the invariant measure on S2 = SU(2)/U(1)

multiplied by (2s + 1). For our purpose, the Q-representation of the quantum operators is the
relevant one. Let B̂ be an arbitrary linear operator acting on V s . Q symbol of the operator B̂

is a function on S2 defined by

BQ(α∗, α) = 〈α|B̂|α〉 ≡ (B̂)Q (12)

where |α〉 is an SU(2) coherent state, which can be parametrized by the most convenient
coordinates. We shall need the Q symbols of the operators Ŝ±,z for the single q-bit system:

S±;Q = q ∓ ip

2

√
4s − q2 − p2 Sz,Q = 1

2
(q2 + p2 − 2s). (13)

The linear combinations of operators Ŝ±,z are expressed as the same linear combinations of
the corresponding Q symbols. The product of two operators is represented by the convolution
of the corresponding symbols. For example, the quadratic operators in the form Ŝ

†
±,zŜ±,z are

represented by (
Ŝ2

z

)
Q

= S2
z,Q(p, q) +

1

8s
(p2 + q2)(4s − p2 + q2)

(Ŝ−Ŝ+)Q = S̄−,Q(p, q)S+,Q(p, q) − 1

8s
(4s − p2q2)2,

(14)
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etc. The Q symbol of the commutators between complex linear combinations of Ŝ±,z is given
by the Poisson bracket with the symplectic structure (6) between the corresponding Q symbols.
This is not the case for the commutators involving nonlinear expressions of Ŝ±,z. Expansion
in powers of the parameter 1/s of the dynamical equations corresponds to the ‘quasi-classical’
approximation, but this does not make much sense in the case of a q-bit in a pure state which is
a typically quantum object with s = 1/2. (However, let us mention that a statistical ensemble
of q-bits could be prepared in such a mixture that all expectation values are as in classical
statistical mechanics up to a desired accuracy [28].)

A system consisting of several q-bits is described on a space obtained by direct
multiplication of the Hilbert spaces corresponding to each of the q-bits, and the phase space is a
direct product of the spheres S2, with the geometric structure of the product: M = S2 ×· · · S2.
The symplectic and metric structures on M are obtained by repeating the 2 × 2 blocks (6) and
(7) on the diagonal of a 2N × 2N matrix.

The coherent states of N q-bits, |α〉 ≡ |α1〉⊗ · · · |αN 〉 are the points of the phase space M,
and correspond to disentangled (separable) states of the system. Entangled (non-separable)
pure states are described by delocalized distributions on the product of N spheres. The Q
symbols of multi q-bit operators are introduced analogously as in the single q-bit case. For
example, the following Hamiltonian, of the form (1), contains a sum of bilinear expression
1
⊗ · · · Ŝi

z · · · Ŝj
z · · ·⊗ 1, and its Q symbol is

〈q, p|Ĥ |q, p〉 = 〈q, p|
∑

j

bjSz
j +

∑
i<j

αi,j S
i
xS

j
x |q, p〉

=
∑

i

bi

4

(
p2

i + q2
i

)
+
∑
i,j

λi,j

4
qiqj

√(
4si − p2

i − q2
i

)(
4sj − p2

j − q2
j

)
. (15)

Stability and bifurcations of the stationary solutions of the Hamiltonian system given by (15)
was analysed in [22]. Relation between the symmetry of the quantum Hamiltonian (1) and
the qualitative properties of the dynamics of the classical Hamiltonian system given by the
Q symbol HQ was established in [29].

Before we proceed to the discussion of the evolution of the open system in the following
sections, let us briefly comment on the phase-space representation of the evolution of the
closed system (1). Firstly, consider only one q-bit in the external constant field. The
Heisenberg evolution equation for an operator B̂ is represented by an evolution equation on
the phase space. This is in general a functional integral equation, which can be approximated
asymptotically for short time intervals and in an appropriate classical limit by Hamiltonian
differential equations. However, if the quantum Hamiltonian is a linear expression of the
generators of the dynamical group, as in the case of the Hamiltonian (1) for a single q-bit,
the Heisenberg’s equations are exactly represented by the Hamiltonian dynamical equations
on the phase space. More precisely, if B̂(t) is a solution of the Heisenberg equation
with the Hamiltonian Ĥ , which is a linear combination of Ŝz, Ŝ+, Ŝ−, then the function
BQ(p(t), q(t)) = 〈(p, q)(t)|B̂|(p, q)(t)〉 = 〈p, q|B̂(t)|p, q〉 is a solution of the Hamilton’s
classical equation ḂQ = {BQ,HQ}, where the Hamiltonian HQ = 〈p, q|Ĥ |p, q〉 and the
operator Ĥ are the same linear combinations of the Q symbols SiQ = 〈p, q|Ŝi |p, q〉 and
operators Ŝi , respectively. Here, |p, q〉 are the coherent states, parametrized by the local
canonical coordinates, and |(p, q)(t)〉 is a solution of the corresponding Schrödinger equation.
In the linear case, and only in this case, there are no quantum corrections to the solutions of
the classical Hamilton equations. This fact can be rephrased by saying that in this (and only
this) case the subset of coherent states is invariant under the evolution. In general, an initial
coherent state evolves into a pure state which is a nontrivial superposition of coherent states.
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In the multi q-bits case, the generators Si
±,z ≡ 1

⊗ · · · Ŝi
±,z · · ·⊗ 1 for the ith q-bit are

represented by functions which depend effectively only on (qi, pi). Bilinear products of
the generators Ŝi

±,zŜ
j
±,z, one acting in Vi and the other in Vj , are represented by products

of functions 〈qi, pi |Ŝi
±,z|qi, pi〉 and 〈qj , pj |Ŝj

±,z|qj , pj 〉. Furthermore, Q-representation

of the commutator of any of the components Ŝ
i,j
±,z with a bilinear expression of the form

Ŝi
±,z

⊗
Ŝ

j
±,z is equal to the Poisson bracket between Q symbol of the operator Ŝ

i,j
±,z and

the Q symbol of Ŝi
±,z

⊗
Ŝ

j
±,z. For example, 〈α1, α2|

[
Ŝ1

+, Ŝ
1
x

⊗
Ŝ2

x

]|α1, α2〉 is equal to the
Poisson bracket between Q-representations of the two operators:

{
S1

+,Q, S1
x,QS2

x,Q

}
. This

is a simple consequence of the bilinear character of the expression Ŝ1
±,z

⊗
Ŝ2

±,z, and the
fact that for each single q-bit the Lie algebra relations between the generators and their
Q-representations are the same: 〈αi |

[
Ŝi

±,z, Ŝ
i
±,z

]|αi〉 = {
Si

z,±,Q, Si
z,±,Q

}
. Also, let us point

out that the interaction operators of the bilinear form are actually quite general, because
any well-behaved function, say polynomial or analytic function of SiSj , can be expressed as
f (SiSj ) = (3f (1) + f (−3))1/4 + (f (1)−f (−3))SiSj /4 [11]. To conclude, the evolution of
the Q symbols of the Heisenberg operators for linear combinations of components Ŝi

±,0 could
be calculated from some Hamilton equations with the Hamilton’s function HQ(q1 · · · pN).
These equations provide an approximate phase-space model of the quantum system, which
gives exact results for Si;Q(t). In particular, this enables one to introduce the notions of
qualitatively different types of quantum dynamics in parallel with those of the Hamiltonian
dynamical system given by HQ(q1 · · ·pN) on the product phase space M [22].

3. Linear stochastic Schrödinger equation for the system of q-bits

Evolution of an individual system of q-bits from a pure initial state |ψ〉 ∈ H ≡ V
⊗

N and
under stochastic influence of the environment can be described by a modification of the
standard Schrödinger equation for the closed system with the Hamiltonian (1). There exist
different forms of the stochastic Schrödinger equations with c-number or noncommutative
noise (instead of a long list of quite important references we cite just the review given in [20]).
Different linear stochastic Schrödinger equations (LSSE) have been used in different contexts
(see, for example, [25, 30, 31]). In what follows we shall use the following general form of
an LSSE with a c-number noise:

d|ψ〉 = iĤ |ψ〉 dt − 1

2

∑
l

E
†
l El|ψ〉 dt +

∑
l

El|ψ〉 dWl. (16)

Equation (16) represents a symbolic form of an Ito stochastic differential equation on the
Hilbert space H. The first term represents the standard Schrödinger equation and the last
two terms, containing the so-called environment operators Êl which act also in H, model the
influence of the environment. It is natural to suppose that each Êl can be expressed in terms
of the spin operators Ŝi

±,0 of a single q-bit. Thus, the environment operators acting on the ith
q-bit do not affect directly the dynamics of the j �= i q-bit.

The first of the two terms due to environment describes the drift of |ψ(t)〉, and could be
included in an effective non-Hermitian Hamiltonian operator

Ĥ eff = Ĥ +
i

2

∑
l

Ê
†
l Êl . (17)

The last term describes diffusion of the state vector and contains independent increments
(indexed by l) dWl of complex Wigner c-number processes ηl(t). Thus, we can write,
symbolically dWl(t) = ηl(t) dt and the increments satisfy

M[dWl] = M[dWl dWl′ ] = 0 M[dWl dW̄ l′ ] = δl,l′ dt, (18)
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where M denotes the mean value over the complex white noise ηi(t). The latter satisfy

M[ηl] = M[ηlηl′] = 0 M[ηl(t)η̄l′(t
′)] = δl,l′δ(t − t ′). (19)

The assumption of white noise could be lifted, and the LSSE and nonlinear SSE for the
non-Markovian environments have been constructed (see, for example, [32–34].)

The LSSE (16) represents a particular stochastic unravelling of the Lindblad master
equation [35, 20], for the reduced density matrix ρ̂c(t)

dρ̂c(t)

dt
= −i[Ĥ , ρ̂c] − 1

2

∑
l

[
Êl ρ̂c, Ê

†
l

]
+
[
Êl, ρ̂cÊ

†
l

]
, (20)

in the sense that the solutions of (16) and (20) satisfy

ρ̂c(t) = M[|ψ(t)〉〈ψ(t)|]. (21)

In fact, it can be shown that the form (16) of the LSSE with complex noise ηl(t) is the
unique linear unravelling of (20) which has the same invariance as (20) under the unitary
transformations in the space of the environment operators {Êl} [24].

The LSSE equation (16) is linear, which is of fundamental importance for our purposes,
but it does not preserve the norm of |ψ〉, i.e.

d〈ψ |ψ〉 = 2
∑

Re(〈ψ |Êl|ψ〉 dWl). (22)

Thus, to get the correct ρ̂c(t) which satisfies d Tr ρ̂c(t) = 0 one has to use the non-normalized
projectors |ψ(t)〉〈ψ(t)| in (21).

The Ito–Schrödinger evolution equation (16) can be used to define an Ito–Heisenberg
evolution for operators by requiring 〈ψ(t)|Ŝ|ψ(t)〉 =: 〈ψ |Ŝ(t)|ψ〉. The equation for a
Hermitian Ŝ(t) is then given by

dŜ = −i[Ĥ eff, Ŝ] dt +
∑

l

Ê
†
l ŜÊl dWl dW̄l + Ŝ

∑
l

Êl dWl +
∑

l

Ê
†
l dW̄lŜ (23)

where Ito rules (18) have been used. The Q symbol of the stochastic increment dŜ is

(dŜ)Q = −i([Ĥ eff, Ŝ])Q dt +
∑

l

(
Ê

†
l ŜÊl

)
Q

dWl dW̄l +
∑

l

(ŜÊl)Q dWl +
∑

l

(
Ê

†
l Ŝ
)
Q

dW̄l.

(24)

Averaging (dŜ)Q using (18) gives

M
[(

dŜ

dt

)
Q

]
= M

[
−i([Ĥ eff, Ŝ])Q +

∑
l

(
Ê

†
l ŜÊl

)
Q

]
. (25)

In the following sections we shall obtain a dynamical model on the phase space of the
noise multi q-bit system, i.e. a set of stochastic differential equations for the increments of the
canonical coordinates of the phase space. These equations can be used to calculate stochastic
increments of Q symbols dSQ and their averages. Comparing these equations for the Q
symbols of the components Si

x,y,z;Q with the quantum equations (24), (25), for various choices
of the environment and the system operators, provides an information about the domain of the
phase-space model.

Let us mention that there is a nonlinear unravelling of (20) that corresponds to LSSE (16)
[24]. There are also other nonlinear stochastic Schrödinger equations that have been useful,
in particular, for numerical computations [20]. However, for the path-integral representation
of the stochastic evolution of |ψ(t)〉, the linear character of (16) is fundamental.
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4. Path-integral solution of LSSE for the system of q-bits

In this section, we apply the usual procedure for the construction of the path integral to the
coherent-state representation of the propagator, i.e. G(α1, t;α0, t0) ≡ 〈α1|G(t, t0)|α0〉 where
|α1,2〉 are arbitrary multi q-bit coherent states and Ĝ(t, t0) is the propagator for the LSSE (16).
In order to avoid confusion, we should perhaps mention that the path integral (32) introduced
here is different from the Fayman–Vernon path integral commonly used to derive the master
equations in the treatment of open systems [36, 37]. We recommend [13] for an application
of Fayman–Vernon approach to a pair of q-bits in a bath of oscillators. On the other hand, the
problem which we analyse and our results for the path integral are quite similar to those studied
in [38], the major difference being that we analyse the system of q-bits in the phase-space
representation by coherent states, whereas in [38] the flat R2d phase space is assumed and the
ordinary oscillators Wigner functions are used to bring in the phase-space coordinates.

The propagator can be written as a time-ordered product of propagators over small
intervals of time. Thus,

G(α1, t;α0, t0) = 〈α1|
k=n∏
k=1

T̂ exp

{∫ kε

(k−1)ε

L̂(t ′) dt ′
}

|α0〉

≈ 〈α1|
k=n∏
k=1

(
1 − iĤ kε − 1

2

∑
l

Ê
†
l Êlε + Êl �W(k)l

)
|α0〉, (26)

where

ε = t − t0

n
, �W(k)l = ηl(kε) − ηl((k − 1)ε). (27)

Because the intervals ε are small Ĥ (t), t ∈ [(k − 1)ε, kε] is replaced by a constant operator
Ĥ k ≡ Ĥ (tk), tk ∈ [(k − 1)ε, kε], and Ê are assumed to have no explicit dependence on time,
so that the time ordering operation in the first line becomes redundant.

As usual [39], we introduce in (26) n − 1 resolutions of unity in terms of the multi q-bit
coherent states 1 = ∫

M |α〉 dµ(α)〈α| (dµ is a product of N single q-bit measures but we use
the same symbol). The coherent-state propagator becomes

G(α1, t, α0, t0) = lim
n→∞

∫ k=n∏
k=1

dµ(αk)

[
〈αk|αk−1〉 − i〈αk|Ĥ k|αk−1〉ε

+
∑

l

1

2
〈αk|Ê†

l Êl|αk−1〉ε − 〈αk|Êl|αk−1〉�W(k)

]
. (28)

The scalar product between the coherent states at two consecutive tk−1 and tk can be
written as

〈αk|αk−1〉 = 〈αk|αk〉
(

1 − 〈αk|�αk〉
〈αk|αk〉

)
= 1 − 〈αk|�αk〉

≈ exp(−〈αk|�αk〉), (29)

where we used the fact that the coherent states |α〉 are normalized.
Substituting (29) into (28), G(α1, t, α0, t0) becomes

lim
n→∞

∫ k=n∏
k=1

dµ(αk) exp iε

[
i

〈
αk

∣∣∣∣ d

dt
αk

〉
− 〈αk|Hk|αk〉 −

∑
l

i

2
〈αk|Ê†

l Êl|αk〉

+ i
�W(k)

ε
〈αk|E|αk〉

]
. (30)
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The expression i
〈
αk

∣∣ d
dt

αk

〉
can be written in terms of the complex coordinates zi and z̄i or

in terms of the canonical coordinates (q, p) of the coherent states as follows:

i

〈
α

∣∣∣∣ d

dt
α

〉
= i

2

∑
i,j

(
z̄i

dzj

dt
− zi

dz̄j

dt

)
gi,j =

∑
i

(
−pi

dqi

dt
+ qi

dqi

dt

)
, (31)

where gi,j is the metric on the multi q-bit phase space. The mean values 〈α| · · · |α〉 in (30) are
the Q symbols of the corresponding operators, which we shall write as functions of z̄ and z or
of the canonical coordinates (q, p).

With these substitutions and in the limit n → ∞ the expression (30) can be formally
written in the form of a path integral

G(z̄1, t, z0, t0) =
∫

D(z(t)) exp iS(z̄(t), z(t)), (32)

where D is a measure over the space of paths on the phase space (with the usual reservations
concerning the existence of the limit). The expression S(z̄, z) is given by

S =
∫ t1

t0

dt


 i

2

∑
i,j

gi,j

(
z̄i

∂zj

∂t
− zi

∂z̄j

∂t

)
− HQ(z̄, z) − i

2

∑
l

(
Ê

†
l Êl

)
Q
(z̄, z)




+ i
∫ t1

t0

∑
l

dWl(Êl)Q(z̄, z) (33)

in terms of the Riemann integral
∫ t1
t0

dt and the stochastic integral
∫ t1
t0

dW represents the action
for the LSSE (16). It is a complex and stochastic functional over the phase-space paths.

An interpretation of the functional in (32) can be obtained by writing explicitly the real
part

Re S =
∫ t1

t0

dt

[∑
i

(
−pi

dqj

dt
+ qi

dpi

dt

)
− HQ(p, q)

]
− Im

(∑
l

∫ t1

t0

(Êl)Q dWl

)
(34)

and the imaginary part

Im S =
∫ t1

t0

dt
−1

2

∑
l

(
Ê

†
l Êl

)
Q

+ Re

(∑
l

∫ t1

t0

(Êl)Q dWl

)
(35)

of the action. We see that the integrand in (32) is a product of two terms; the usual exponent
of a phase exp i Re S and the weight factor exp −Im S. The extremal paths of (33) satisfy the
stochastic differential equations on the phase space which are of the form of Hamilton’s
equations, with the Hamiltonian HQ, and the noise term Im

(∑
l (Êl)Qηl

)
. The weight

functional exp −Im S associates different weights to contributions of different paths to the
path integral. The most favoured paths satisfy a relation between the stochastic fluctuations
η(t) and the values of the Q symbols of the environment operators.

5. Stochastic differential equations on the phase space

The method of stationary exponent approximation for the integral (32) consists in replacing
the action functional S(z̄(t), z(t)) by its expansion in small deformations from the extremal
paths. The zero-order approximation gives Gaussian integrals that can be solved, and better
approximation of the integral is obtained by including the further terms in the expansion if the
integrals can be calculated. However, we shall not be interested in performing an approximate
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integration of the path integral (32), but in the phase-space equations which determine the
extremal paths. The latter are determined by the following complex Langevin–Ito equations:

igi,j dzj = ∂

∂z̄j

(
HQ(z̄, z) − i

2
(Ê†Ê)Q(z̄, z)

)
dt + i

∂(Ê)Q(z̄, z)

∂z̄j

dW,

igi,j dz̄j = − ∂

∂zj

(
HQ(z̄, z) − i

2
(Ê†Ê)Q(z̄, z)

)
dt − i

∂(Ê)Q(z̄, z)

∂zj

dW,

(36)

where we have included the sum over different channels
∑

l in the symbol Ê. The expression
(Ê†Ê)Q(z̄, z)) is the Q symbol of the sum of the products of operators Ê

†
l Êl . It differs

from the product of the Q symbols (Ê†)Q(Ê)Q by a function proportional to 1/s, like in the
example (14).

In terms of the 2N canonical coordinates (q, p), the equations are

dqj = ∂

∂pj

(
HQ(q, p) − i

2
(Ê†Ê)Q(q, p)

)
dt + i

∂(Ê)Q(q, p)

∂pj

dW

dpj = − ∂

∂qj

(
HQ(q, p) − i

2
(Ê†Ê)Q(q, p)

)
dt − i

∂(Ê)Q(q, p)

∂qj

dW.

(37)

The symbol dW in general denotes a four-dimensional process whose properties depend
on the particular form of the noise

∑
l Êl dWl , as will be illustrated in the next section. We

shall use the general Ito formula for the stochastic increment of a function SQ

dSQ =
4∑

i=1

[
Ai

∂SQ

∂xi

+ Āi

∂SQ

∂xi

]
dt +

∑
i,j

Bi,j

∂SQ

∂xi

dWij

+
∑
i,j

B̄i,j

∂SQ

∂xi

dW̄j +
1

2

4∑
i,j

(BB†)i,j
∂2SQ

∂xi∂xj

dt, (38)

where the four-dimensional stochastic process

dxi = Ai(x1, x2, x3, x4) dt +
∑

j

Bi,j (x1, x2, x3, x4) dWj, (39)

is defined by (37) via identification: x1 ≡ q1, x2 ≡ q2, x3 ≡ p1, x4 ≡ p2.
Averaging dSq results in

M
[

dSQ

dt

]
=

4∑
i=1

M


Ai

∂SQ

∂xi

+ Āi

∂SQ

∂xi

+
1

2

∑
j

(BB)
†
i,j

∂2SQ

∂xi∂xj


 . (40)

Equations (37) could be interpreted as a classical approximate model of the multi
q-bit quantum system. The Hamilton function HQ and the functions corresponding to the
drift (Ê†Ê)Q and the diffusion (Ê)Q are exact coherent-state representations of the quantum
operators. However, because neither the Hamilton’s function nor the drift term are quadratic
functions of the canonical coordinates, the relation between the stationary paths, i.e., the model
(37) and the quantum system is not clear and should be investigated. For example, as was
pointed out before, in the case of the isolated system of q-bits (1) the evolution of Q symbols of
the Heisenberg operators

(
Ŝi

x,y,z(t)
)
Q

can be calculated using the phase-space equations, i.e.(
dŜi

x,y,z(t)
)
Q

= dSi
x,y,z;Q, which are real and Hamiltonian in this case [22]. In what follows

we shall analyse the relation between the truly quantum evolution of the Q symbols of the
components

(
Ŝi

x,y,z

)
Q

and the evolution of these functions according to equations (37), for
some special forms of the environment operators.
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6. Examples

In the following examples, we shall consider the system of two q-bits, which is sufficient to
have a realization of a universal quantum processor [40, 1]. In fact, we shall consider the pair
of q-bits with the Hamiltonian

Ĥ = λŜ1
xŜ

2
x + bŜ1

z + bŜ2
z, (41)

where b and λ are constants. The evolution of Q symbols of any of the components Ŝi
x,y,z for

the isolated system (41) is exactly reproduced by the corresponding phase-space equation and
shows typical properties of a Hamiltonian dynamical system with mixed dynamics [22].

In order to compare the truly quantum and the phase-space evolutions, we compare a
formula for the stochastic increment dSQ of a Q symbol, generated by the Ito–Langevien
equations (38) and (40) with the quantum formulae (24) and (25) for (dŜ)Q. Let us also
mention that in order to preserve the original interpretation of the model the limit s → ∞
should not be used. The value of each of the spins is held fixed si = 1/2.

We shall suppose that the stochastic term in LSSE (16) is of the following form:

2∑
i=1

dWi
xŜ

i
x + dWi

yŜ
i
y + dWi

yŜ
i
y, (42)

where the six processes dWi
x,y,z are assumed to be independent. In this case, the Ito rules for

the components dWqi
and dWpi

in equations (37) are

M
[
dW̄qi

dWqj

] = δi,j dt, M
[
dW̄pi

dWqj

] = δi,j dt, M
[
dW̄pi

dWpj

] = δi,j dt.

(43)

The Ito formula (38) in our case, because of (37) and (43) and with identification
x1 ≡ q1, x2 ≡ q2, x3 ≡ p1, x4 ≡ p2, becomes

dSQ =
4∑

i=1

[
Ai

∂SQ

∂xi

+ Āi

∂SQ

∂xi

]
dt +

∑
i

Bi

∂SQ

∂xi

dWi +
∑

i

B̄i

∂SQ

∂xi

dW̄i

+
1

2

4∑
i

(BB†)i,i
∂2SQ

∂x2
i

dt. (44)

Let us now apply the formulae (37) for the Hamiltonian and the noise terms of the forms
(41) and (42). The Q symbols of the Hamiltonian and the quadratic operators entering the
drift term are of the following form:

HQ = 1

2

∑
i=1,2

(
p2

i + q2
i

)
+ µq1q2

√(
2 − p2

1 − q2
1

)(
2 − p2

2 − q2
2

)
,

(
Ŝ†

zŜz

)
Q

= 1

4
[(q2 + p2 − 1)2 + (p2 + q2)(2 − p2 − q2)] = 1/2

(
Ŝ†

xŜx

)
Q

= 1

4
[4 − 2p4 − 2q2 + q4 + p2(4 − 3q2)]

(
Ŝ†

zŜz

)
Q

= 1

4
[−3p4 + p2(6 + q2) + 2(−2 − 2q2 + q4)],

(45)

where we have set s = 1/2 and µ = λ/2b.



2168 N Burić

Equations (37) for the complex stochastic increments of the canonical coordinates become

dqi = Qi(q1, q2, p1, p2) dt + DQi(qi, pi) dt + Diff Qi(qi, pi) dWqi

dpi = Pi(q1, q2, p1, p2) dt + DPi(qi, pi) dt + Diff Pi(qi, pi) dWpi
,

(46)

where the functions Qi, Pi,DQi,DPi, Diff Qi and Diff Pi are given by

Q1 = p1 − µp1q1q2

√
2 − p2

2 − q2
2√

2 − p2
1 − q2

1

,

P1 = −q1 + µq1q1q2

√
2 − p2

2 − q2
2√

2 − p2
1 − q2

1

− 2µq2

√(
2 − p2

2 − q2
2

)(
2 − p2

1 − q2
1

)
,

DQ1 = i

8

(−20p3
1 − 4p1

(−5 + q2
1

))
DP1 = i

8

(
12q3

1 − 4p2
1q1 − 12q1

)
,

Diff Q1 = i

2


 −p1q1 dWx1√

2 − p2
1 − q2

1

− p2
1 dWy1√

2 − p2
1 − q2

1

−
√

2 − p2
1 − q2

1 dWy1 + 2p1 dWz1


 ,

Diff P1 = i

2


 q2

1 dWx1√
2 − p2

1 − q2
1

−
√

2 − p2
1 − q2

1 dWx1 +
p1q1 dWy1√
2 − p2

1 − q2
1

− 2p1 dWz1


 ,

and analogously for the second q-bit.
The first observation that we would like to make concerns the situation when the

environment is coupled only to one of the two q-bits, say the first q-bit. This situation is
used in a modelling of the decoherence on a QI processor in a recent paper [41]. The evolution
of the Q symbols S2

x,y,z;Q of the second q-bit is then exactly described by the model (37) and
equations (40), so that the phase-space model is in this sense correct, and could be used to
complement the analyses in [41]. In fact, the exact quantum equations for M[(dŜ2)Q/dt] (25)
and the model equation for M

[
dŜ2

Q

/
dt
]

(40) have only the Hamiltonian terms and these are
equal. The stochastic influence of the environment is felt through the coupling with the first
q-bit.

The other case, in which the relations between the exact quantum evolution and the phase-
space model can easily be understood, analytically occurs when the environment operators are
expressed as linear combinations of the z components Ŝ1,2

z . Let us point out that z component
of the noise does not contribute to the drift term. In this case, i.e. if the noise is

∑
1,2 Ŝi

z dWzi
,

then the equations simplify to

dqi = Qi dt + ipi dWzi
, dpi = Pi dt − iqi dWzi

. (47)

In this case, the Ito formulae (44) for the components dSx;Q; dSy;Q and dSz;Q are

dS1
z,Q = µp1q2

√(
2 − p2

2 − q2
2

)(
2 − p2

1 − q2
1

)
+ i

=0︷ ︸︸ ︷
(p1q1 − p1q1)

(
dWz1 + dW̄z1

)
+

(
p2

1 + q2
1

)
2

dW 2
z1
, (48)
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dS1
x,Q = 1

2
p1

√
2 − p2

1 − q2
1

(
1 + i dWz1 − i dW̄z1

)
+

q1
(
3p4

1 + 2p2
1

(−3 + q2
1

)
+ q2

1

(−2 + q2
1

))
4
(
2 − p2

1 − q2
1

)3/2 dW 2
z1

(49)

dS1
y,Q = 1

2
q1

√
2 − p2

1 − q2
1

(
1 + i dWz1 − i dW̄z1

) − µ
(
p2

1q2 − q2 + q2
1q2

)√
2 − p2

2 − q2
2

− p1
(
p4

1 + 3q2
1

(−2 + q2
1

)
+ 2p2

1

(−1 + q2
1

))
4
(
2 − p2

1 − q2
1

)3/2 dW 2
z1
. (50)

Comparison of equations (48)–(50) with the corresponding exact quantum equations (24)
leads to the following conclusions. Firstly, if the environment operator is Ê1 = Ŝ1

z, Ê2 = Ŝ2
z ,

then the exact quantum equation (24) and the model equations (48) give the same evolution
of S

1,2
z,Q, In fact, in this case the drift term is zero and there are only the Hamiltonian and the

diffusion terms.
Consider now the evolution of a component S1

x,Q with the environment like in
equations (47). The Hamiltonian terms, and the terms with dWz1 and dW̄z1 in the Ito
equation (49), coincide with the corresponding terms in the exact quantum equation. However,
there is no drift term in the model equations, and the exact quantum equations have a nonzero
drift. In fact, the Q symbol of (ŜzŜz) is constant and consequently {(ŜzŜz)Q, Sx,Q} = 0, which
is different from the Q symbol of the commutator [ŜzŜz, Ŝx] = i((ŜzŜy)Q+(Ŝy Ŝz)Q)/2. Thus,
the model equations do not describe the full exact evolution of Sx,Q, but, nevertheless, the
Hamiltonian and the stochastic terms are correct. We need numerical solutions of the exact
and the model equations in order to further compare them.

If the noise has components in the (x, y) plane and acts on both q-bits the model
equations for dS

1,2
x,y,z,Q differ from the exact quantum equations. The relation between the

two has to be studied by comparison of the numerical solutions.
As a final example, we consider the Hamiltonian used in [15] to model a pair of charge

q-bits in an electromagnetic environment given by

Ĥ = −µŜ1
yŜ

2
y − Ŝ1

x − Ŝ2
x + cŜ1

z + cŜ2
z + HB, (51)

where the first three terms correspond to the two q-bits, HB is the Hamiltonian of the
environment and the environment operators are again proportional to the Ŝz components.

Numerical solutions of the corresponding stochastic phase-space equation indicate
conclusions which are qualitatively similar to those that have been obtained in [15] by
approximate solutions of the Bloch–Redfield master equation for the reduced density matrix.
For example, consider the dynamics of

(
Ŝ1

z

)
Q

generated by the solution of the SDEs with
the initial condition (p1, q1, p2, q2) = (0, 0, 0, 0) corresponding to the state |1/2, 1/2〉⊗
|1/2, 1/2〉. If the noise is zero, the values of

(
Ŝ1

z

)
Q

oscillate regularly with constant amplitude
and in a domain, which includes the value at |1/2, 1/2〉⊗ |1/2, 1/2〉, i.e. 1/2 (see figure 1(a)).
For a nonzero noise the behaviour of

(
Ŝ1

z

)
Q
(t) is different (see figure 1(b)). It starts to oscillate

with an increasing amplitude and after some time, proportional to the ratio between the spin
coupling and noise,

(
Ŝ1

z

)
Q
(t) oscillates irregularly through all possible values, i.e. from 1/2

to −1/2. This can be interpreted as an oscillatory dumping of the survival probability of the
initial state |1/2, 1/2〉⊗ |1/2, 1/2〉. This is qualitatively consistent with the results presented
in [15].
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Figure 1. Illustration of the oscillations of the Q symbol (Ŝ1
z)Q(t) of z component of the first q-bit

for the Hamiltonian (51) for (a) no noise c = 0 and (b) small noise c = 0.029. In both cases µ = 6
and the initial condition in the phase space corresponds to the state |1/2, 1/2〉⊗ |1/2, 1/2〉.

7. Summary

In this paper, we introduced a phase-space model of a multi q-bit system in interaction with the
environment. The original quantum system in a pure state is described by a linear stochastic
Schrödinger equation. In order to obtain the phase-space model, we employed the path
integral form of the coherent-state representation of the stochastic propagator. The stationary
exponent approximation is used to obtain the complex Ito stochastic differential equations for
the canonical variables of the phase space of the multi q-bit system. These equations are only
an approximation, but in the case of the isolated system the phase-space Hamiltonian equations
give Liouville equation for the Q symbols of the components Ŝi

x,y,z(t) which coincides with
exact quantum equation, owing to the fact that the Hamiltonian is a multilinear expression
of the generators Ŝi

x,y,z. This motivated us to study the approximate model of the open
system.

We have considered some simple and typical forms of the environment operators for
which the approximate phase-space model can easily be compared with the exact quantum
equations. We concluded that the model correctly simulates averaged evolution of Si

x,y,z;Q(t)

of the ith q-bit if the q-bits other then the ith one are coupled to the environment, and the
ith one is coupled only to the other q-bits but not to the environment. Furthermore, if the
environment operators are given by the z components Ŝi

z then the model equations correctly
simulate Si

z;Q(t). Evolution of the other components Si
x,y;Q(t) is not correctly described by

the model because the drift terms in the approximate and the exact quantum equations are
different, although the Hamiltonian and the stochastic terms are equal. If the environment
operators have components in the (x, y) plane, then the model and the exact equation for
Si

x,y,z;Q(t) differ in both the drift and the diffusion terms. Then, the relation between the
phase-space model and the exact quantum system needs to be studied by comparison of the
numerical solutions.
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